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Abstract
Quantum coherence and entanglement originate from the superposition principle. We
derive a rigorous relation between the l1-norm of coherence and concurrence, in that
we show that the former is always greater than the latter. This result highlights the
hierarchical relationship between coherence and concurrence, and proves coherence to
be a fundamental and ubiquitous resource.We derive an analogous form ofmonogamy
inequality, which is based on the partial coherence of the reduced two-qubit and
reduced single qubit of the particular class of three-qubit state. Moreover, we provide
coherence-based inequality for the classification of GHZ class and W class of three-
qubit states. Finally, we provide theoretical discussion for the possible implementation
of the scheme in an experiment.

1 Introduction

Quantum coherence and entanglement are arguably the most significant phenomena
appeared in quantum mechanics that mark the departure from classical mechanics.
Entanglement has no classical analogue, but unlike this purely quantum mechanical
phenomenon, coherence is a familiar event in optics. Although quantum theory of
coherence forms the foundation of the study and manipulation of optical coherence
phenomenon, there is a significant difference between the two, which has been studied
and demonstrated through the multipoint correlation functions [1] and the phase space
representation of quantum mechanics [2]. This works well to distinguish between the
classical and quantum phenomena, but fails to quantify the amount of coherence
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present in a given system. To overcome this caveat, recently the resource theory of
coherence was formulated by Buamgratz et al. [3]. It provides a quantum information
theoretic framework to quantify and manipulate coherence levels in a system. The
proper measure of coherence is needed to quantify the amount of coherence present in
a quantum system. To probe this, they prescribed some postulates that an idealmeasure
of quantumcoherencemust satisfy. This has prompted various applications of quantum
coherence to variegated fields such as thermodynamics [4], quantum metrology and
sensing [5], one-way quantum computing [6] and quantum biology [7]. Quantum
information protocols such as quantum secret sharing [8] and quantum private query
[9] also exploit quantum coherence as a resource. Some of the important works to
formulate an efficient resource theory of coherence are delineated in an extensive
review [10].
Entanglement and coherence both arise from the superposition principle of quantum
physics and are considered to be the key concepts for quantum technologies. Unlike
entanglement, the amount of coherence depends on basis, and thus, the application
of local unitary transformations on the quantum system may enhance the amount of
coherence present in a system. In [11], a hierarchical relationship among quantum
coherence, discord and entanglement is presented, which proves coherence as a fun-
damental manifestation of quantum correlations.
Superposition principle manifests itself in two ways in quantum mechanics: quantum
coherence and quantum entanglement. Zhao et al. [12] have studied the relationship
between coherence, concurrence and negativity for the particular class of two-qubit
bipartite quantum states. The complementarity relation between the entanglement of
formation and quantum coherence has been obtained by Pan et.al [13]. Stretslov et
al. [14] have shown that there exist incoherent operations by which coherence can
be converted to entanglement. A generalized process is given in [15], which shows
general scheme to produce entanglement using nonclassicality as a resource.
The motivation of this work lies in the following facts: (i) Entanglement serves as a
vital resource in various quantum information processing tasks such as teleportation
and super-dense coding. But entanglement is quite expensive and difficult to prepare in
comparisonwith other resources such as discord and coherence. Hence, it is imperative
to determine a hierarchical relation between entanglement and coherence. (ii) The
well-known monogamy inequality has been derived for quantum entanglement [16]
and discord [17]. Thismotivates us to derive an analogousmonogamy inequality based
on the partial coherence of the two-qubit reduced state and single-qubit reduced state.
(iii) There exist various methods based on entanglement by which GHZ class and W
class can be distinguished, but there does not exist any method based on coherence
by which we can distinguish GHZ class and W class. This is the driving force for the
derivation of coherence-based inequality that may help to discriminate GHZ class and
W class. The discrimination between GHZ class and W class is important because it
is known that the state of the form 1√

2
(|000〉 + |111〉) belongs to GHZ class always

performed better in many quantum information processing tasks such as quantum
teleportation than any three-qubit state that belongs to W-class. In [18], authors have
studied the discrimination of three-qubit GHZ and W class of states.
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This paper is organized as follows: In Sec. II, we have studied the relationship between
coherence and concurrence of an arbitrary two-qubit state. In Sec. III, we have derived
an inequality based on coherence that is analogous to concurrence-based monogamy
inequality. Furthermore, we have constructed coherence-based inequality that may
discriminate between GHZ class and W class. We conclude in Sec. IV.

2 Hierarchical relationship between coherence and concurrence of an
arbitrary two-qubit state

In this section, we study the hierarchical relationship between the concurrence of an
arbitrary two-qubit bipartite quantum state and its l1-norm of coherence.
The l1-norm of quantum coherence is defined as summation of modulus of the off-
diagonal terms of given quantum state described by the two-qubit density matrix ρ

[3],

Cl1(ρ) =
∑

i, j,i �= j

|ρi j |, i, j = 1, 2, 3, 4 (1)

For any two-qubit density matrix ρ, concurrence can be defined as [19]

C(ρ) = max
{
0,

√
λ1 − √

λ2 − √
λ3 − √

λ4

}
(2)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 denote the eigenvalues of the matrix ρρ̃, ρ̃ = (σy ⊗
σy)ρ

∗(σy ⊗ σy) referred to as the spin flipped density matrix and σy = −i |0〉〈1| +
i |1〉〈0| represent the Pauli matrix.

Theorem 1 For any two-qubit entangled state described by the density matrix ρ, l1-
norm of quantum coherence (Cl1(ρ)) is related to the concurrence of ρ (C(ρ)) as

C2(ρ) < 2(1 − SL(ρ)) + Cl1(ρ) (3)

where SL(ρ) = 4
3 (1 − Tr(ρ2)) denote the linear entropy of ρ.

Proof Let us consider an entangled two-qubit quantum state described by the density
operator ρ. It is given by

ρ = 1

4
[I ⊗ I +

3∑

i=1

riσi ⊗ I + I ⊗
3∑

i=1

siσi

+
3∑

i, j=1

ci jσi ⊗ σ j ] (4)
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The two-qubit state ρ given in (4) can be written in the matrix form as

ρ =

⎛

⎜⎜⎝

t11 t12 t13 t14
t∗12 t22 t23 t24
t∗13 t∗23 t33 t34
t∗14 t∗24 t∗34 t44

⎞

⎟⎟⎠ ,

4∑

i=1

tii = 1 (5)

where (∗) denotes the complex conjugate.
The concurrence of the entangled state ρ is given by

C(ρ) = √
λ1 − √

λ2 − √
λ3 − √

λ4

⇒ C(ρ) ≤ √
λ1

⇒ C2(ρ) ≤ λ1 ≤ Smax (ρρ̃) ≤ Smax (ρ)Smax (ρ̃) (6)

where Smax (ρρ̃) denotes the maximum singular value of the matrix ρρ̃. The last
inequality follows from [20].
Inequality (6) can be further simplified by using the result Smax (ρ) ≤ ‖ρ‖2, where
‖ρ‖22 = Tr(ρ2) [21]. Then, inequality (6) reduces to

C2(ρ) ≤ ‖ρ‖2Smax (ρ̃) ≤ ‖ρ‖2 ≤
4∑

i=1

t2i i + Cl1(ρ) (7)

The proof of the last inequality is given in appendix. (For details, see Appendix-A.)
Since t11 + t22 + t33 + t44 = 1, we have

2
∑

i< j

ti i t j j = 1 −
4∑

i=1

t2i i (8)

The state parameter c33 in terms of tii , (i = 1, 2, 3, 4) can be expressed as:

c33 = t11 − t12 − t33 + t44 (9)

The linear entropy SL(ρ) of the state ρ is given by:

SL(ρ) = 3

4
− 1

4
[

3∑

i=1

(r2i + s2i ) +
3∑

i, j=1

c2i j ]

≤ 3

4
− 1

4
c233

= 3

4
− 1

4
(t11 − t22 − t33 + t44)

2

= 3

4
− 1

4

4∑

i=1

t2i i − 1

2
(t11t44 − t11t22
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−t11t33 + t22t33 − t22t44 − t33t44)

<
3

4
− 1

4

4∑

i=1

t2i i + 1

2

∑

i< j

ti i t j j (10)

From (8) and (10), we get

4∑

i=1

t2i i ≤ 2(1 − SL(ρ)) (11)

Using (11) in (7), we get

C2(ρ) < 2(1 − SL(ρ)) + Cl1(ρ) (12)

Hence, the theorem is proved. �
Corollary 1 If ρA and ρB denote the reduced density operator of the composite state
ρAB in 2 ⊗ 2-dimensional system, then [22]

C2(ρAB) < 2(
7

4
− 2SL(ρB) + 1

2
SL(ρA)) + Cl1(ρAB) (13)

C2(ρAB) < 2(
7

4
− 2SL(ρA) + 1

2
SL(ρB)) + Cl1(ρAB) (14)

Proof If SL(ρA) and SL(ρB) denote the linear entropy of the reduced density operator
ρA and ρB , then the following inequality holds [22]

SL(ρAB) ≥ 2SL(ρB) − 1

2
SL(ρA) − 3

4
(15)

SL(ρAB) ≥ 2SL(ρA) − 1

2
SL(ρB) − 3

4
(16)

Thus, Corollary-1 can be derived using results (15), (16) and Theorem-1 given in (3).
�

3 Coherence-based inequality analogous to the concurrence-based
inequality derived by Coffman et.al.

In this section, wewill derive an inequality that provides us the upper bound of the sum
of the coherences of the reduced two-qubit of the particular class of pure three-qubit
system. This inequality is derived in the spirit of the seminal work by Coffman et.al.
[16].
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Fig. 1 The obtained results are backed up by the numerical analysis of 108 randomly generated density
matrices. The blue line is y = x , and all the points lie in the region y ≥ x , which corroborates Theorem 1

For a pure three-qubit state |ψ〉ABC , Coffman et al. have derived an inequality based
on the concurrence between the qubits A and B and the qubits A and C . Mathemati-
cally, this inequality can be expressed as [16]:

C2
AB + C2

AC ≤ C2
A(BC) (17)

where CAB and CAC denote the partial concurrences that measure the amount of
entanglement in the reduced two-qubit mixed state described by the density operators
ρAB and ρAC , respectively, of the pure three-qubit state |ψ〉ABC . CA(BC) denotes the
concurrence between subsystems A and BC . The inequality (17) is also known as
monogamous inequality. Here, our aim is to construct the coherence-based inequality
analogous to the concurrence-based inequality (17).
Any state vector in a three-qubit system can be spanned by eight computational basis
vectors, and thus, we require seven parameters to characterize a general three-qubit
quantum state. But Acin et al. [23] have deduced the canonical form of three-qubit
state and shown that it can be represented by five parameters only. This idea was later
on proved to be true for multipartite states by Cateret et al. [24].
The canonical form of three-qubit state can be expressed as [23]:

|ψ〉(θ)
ABC = λ0 |000〉 + λ1e

iθ |100〉 + λ2 |101〉 + λ3 |110〉
+λ4 |111〉 (18)

where the state parameters λi ≥ 0, (i = 0, 1, 2, 3, 4) and the phase factor 0 ≤ θ ≤ π .
The normalization condition gives

λ20 + λ21 + λ22 + λ23 + λ24 = 1 (19)
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If there is no phase factor, i.e., θ = 0, then the three-qubit state (18) reduces to a
particular class, which is represented by:

|ψ〉(0)ABC = λ0 |000〉 + λ1 |100〉 + λ2 |101〉 + λ3 |110〉
+λ4 |111〉 (20)

The relations between the state parameters and the partial concurrences of the pure
three-qubit state |ψ〉(0)ABC are invariants under local unitary transformation, and these
invariant relations are given by [25]

CAB = 2λ0λ3
CAC = 2λ0λ2 (21)

l1 normof coherence for the reduced two-qubit states and single-qubit state is described
by the density operators ρAB , ρAC and ρA, respectively, of the pure three-qubit state
|ψ〉(0)ABC that are given by

Cl1(ρAB) = 2(λ0λ1 + λ0λ3 + λ1λ3 + λ2λ4) (22)

Cl1(ρAC ) = 2(λ0λ1 + λ0λ2 + λ1λ2 + λ3λ4) (23)

Cl1(ρA) = 2λ0λ1 (24)

Squaring (22) and (23) and then adding, we get

C2
l1(ρAB) + C2

l1(ρAC ) = 4[(λ0(λ1 + λ3) + λ1λ3 + λ2λ4)
2

+(λ0(λ1 + λ2) + λ1λ2 + λ3λ4)
2]

= C2
AB + C2

AC + 2C2
l1(ρA)

+(Sum of positive terms) (25)

Equation (25) can also be expressed as:

C2
l1(ρAB) + C2

l1(ρAC ) − 2C2
l1(ρA) = Sum of all finite positive

numbers

≥ 0 (26)

Hence, the required inequality is given by:

C2
l1(ρAB) + C2

l1(ρAC ) ≥ 2C2
l1(ρA) (27)

Inequality (27) can be considered as an analogous form of the concurrence-based
monogamous inequality (17). Inequality (27) holds for the particular type of large
class of pure three-qubit state |ψ〉(0)ABC .
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4 Few inequalities based on coherence

In this section, we will derive the coherence-based inequality that may be used to dis-
criminate GHZ class andW class of pure three-qubit state. Then, we also characterize
GHZ class of state based on few coherence-based inequalities.

4.1 Discrimination of pure three-qubit GHZ andW class using coherence-based
inequality

GHZ class andW class represent two genuine entangled class of three-qubit pure state,
which are inequivalent under stochastic local operation and classical communication
(SLOCC). The amount of entanglement in three-qubit state that belongs to GHZ class
can be quantified by the nonzero value of the three-tangle denoted by τ . For any pure
three-qubit state |ψ〉ABC , it can be defined as residual entanglement [16]

τ = C2
A(BC) − C2

AB − C2
AC (28)

The tangle for the state |ψ〉θABC can be calculated as:

τ|ψ〉θABC = 4λ20λ
2
4 (29)

If the state parameters λ0 and λ4 are nonzero, then the state that belongs to GHZ class
can be expressed in the following form:

|ψ〉(0)GHZ = λ0 |000〉 + λ1 |100〉 + λ2 |101〉 + λ3 |110〉
+λ4 |111〉 (30)

The three-tangle vanishes for W class of states. Therefore, either λ0 = 0 or λ4 = 0
for W class of states. From (21), we can observe that if we take λ0 = 0, then CAB =
CAC = 0. Therefore, it would be advisable to take λ4 = 0 for W class of state, and it
is expressed in the form:

|ψ〉(0)W = λ0 |000〉 + λ1 |100〉 + λ2 |101〉 + λ3 |110〉 (31)

Thus, it may appear that tangle can be a suitable candidate for the classification of
GHZ class and W class. But since tangle remains zero for three-qubit biseparable and
separable classes of states, it is not possible to conclude that the given class represents
a W class if the tangle is zero. Thus, we derive here coherence-based inequality that
may be used to classify pure three-qubit GHZ and W class of states.
Let us first recall (20), which represent the canonical form of pure three-qubit state
|ψ〉(0)ABC . To start with the derivation of the inequality, let us consider the expression
Cl1(ρAB) − Cl1(ρAC ), which is given by

Cl1(ρAB) − Cl1(ρAC ) = 2(λ3 − λ2)(λ0 + λ1 − λ4) (32)
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Now we can consider two cases based on the sign of the expression (λ3 − λ2).
Case-I: If λ3 − λ2 ≥ 0, then we can observe the following points considered below:
(i) Cl1(ρAB) − Cl1(ρAC ) ≥ 0, for every state belong to W class given by |ψ〉(0)W .
(ii) Cl1(ρAB) − Cl1(ρAC ) < 0, for at least one state belong to GHZ class given by
|ψ〉(0)GHZ .
Case-II: If λ3 − λ2 < 0, then we have the following:
(i) Cl1(ρAB) − Cl1(ρAC ) < 0, for every state belong to W class given by |ψ〉(0)W .
(ii) Cl1(ρAB) − Cl1(ρAC ) ≥ 0, for at least one state belong to GHZ class given by
|ψ〉(0)GHZ .

4.2 Few results on the characterization of GHZ class

We discuss here few results, which will be applicable only for the states that belong
to GHZ class.

Result-1: If the state belongs to GHZ class and choose the state parameters λ0, λ1
and λ4 in such a way so that λ0 + λ1 − λ4 < 0 holds, then

C2
AB + C2

AC < 2(2 − SL(ρAB) − SL(ρAC ) + Cl1(ρAC )) (33)

Proof Let us consider any state that belongs to |ψ〉(0)GHZ . Then, using the result in
Theorem-1, the sum of the partial concurrences CAB and CAC can be expressed as:

C2
AB + C2

AC ≤ 2[2 − SL(ρAB) − SL(ρAC )) + Cl1(ρAB)

+Cl1(ρAC )]
< 2[2 − SL(ρAB) − SL(ρAC )

+Cl1(ρAC )] (34)

If λ0 + λ1 − λ4 < 0 holds for the state that belongs to GHZ class |ψ〉(0)GHZ , then we
have Cl1(ρAB) < Cl1(ρAC ), and we achieved the last inequality. Hence proved. �

Result-2: If the state belong to GHZ class and the inequality λ0 + λ1 − λ4 < 0
holds for some state parameters λ0, λ1 and λ4, then

Cl1(ρA) < Cl1(ρAC ) (35)

Proof Recalling (27) and re-expressing it as

C2
l1
(ρAB) + C2

l1
(ρAC )

2
≥ C2

l1(ρA) (36)

Using AM-GM inequality on C2
l1
(ρAB) and C2

l1
(ρAC ), we get

C2
l1
(ρAB) + C2

l1
(ρAC )

2
≥ Cl1(ρAB)Cl1(ρAC ) (37)
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From (36) and (37), it is not clear that whether Cl1(ρAB)Cl1(ρAC ) − C2
l1
(ρA) ≥ 0 or

Cl1(ρAB)Cl1(ρAC ) − C2
l1
(ρA) < 0 holds. To investigate this, let us express the value

of the expression Cl1(ρAB)Cl1(ρAC ) − C2
l1
(ρA) in terms of the state parameters. We

have

Cl1(ρAB)Cl1(ρAC ) − C2
l1(ρA) = 4λ0λ1λ2(λ0 + λ1)

+4λ3(λ0 + λ1)(λ0λ1 +
λ0λ2 + λ1λ2) (38)

Since all λi ≥ 0, we get

Cl1(ρAB)Cl1(ρAC ) ≥ C2
l1(ρA) (39)

If λ0 + λ1 − λ4 < 0 holds for the state that belongs to GHZ class |ψ〉(0)GHZ , then we
have Cl1(ρAB) < Cl1(ρAC ), and using the result given in (39), we get

C2
l1(ρA) ≤ C2

l1(ρAC )

⇒ Cl1(ρA) < Cl1(ρAC ) (40)

Hence proved. �

4.3 Experimental realization of the inequality �0 + �1 − �4 < 0

In the previous sections, we have seen that the inequality λ0 + λ1 − λ4 < 0 plays an
important role in the discrimination of GHZ class andW class and also take part in the
characterization of GHZ class. By seeing its importance in the characterization and
classification problem,we provide here the theoretical prescription of the experimental
realization of the inequality λ0 + λ1 − λ4 < 0.
Multiplying by λ0 > 0 both sides of the inequality λ0 + λ1 − λ4 < 0, we get

λ20 + λ0λ1 − λ0λ4 < 0

⇒ √
τ ≥ 2λ0(λ0 + λ1)

⇒ 〈O〉|ψ〉(0)ABC
> 〈O1〉|ψ〉(0)ABC

+ 〈O2〉|ψ〉(0)ABC
(41)

where the operators O , O1 and O2 can be decomposed in terms of Pauli matrices as

O = 2(σx ⊗ σx ⊗ σx ) (42)

O1 = 2(σx ⊗ σz ⊗ σz) (43)

O2 = 1

4
[(I + σz) ⊗ (I + σz) ⊗ (I + σz)] (44)

The expectation value of the operators 〈O〉|ψ〉(0)ABC
, 〈O1〉|ψ〉(0)ABC

, 〈O2〉|ψ〉(0)ABC
paves a

way for the possible implementation of the technique to distinguish GHZ class andW
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class. A classification protocol introduced in [26] has been implemented on an NMR-
based quantum information processor by Singh et al. [27]. Thus, we believe that
the classification scheme studied in this work may be implemented in NMR-based
experiment

5 Conclusion

To summarize, we have illustrated a rigorous proof that l1-norm of coherence is greater
than concurrence for a general two-qubit system. In the context of partial concurrence-
based monogamy inequality, we have designed an analogous form of monogamy
inequality based on partial coherence of the special large class of three-qubit pure state.
We have also derived the partial coherence-based inequality to distinguish between
GHZ and W class of states, and further we have characterized three-qubit GHZ class
on the basis of the constructed inequality. We have corroborated our theoretical efforts
by providing an experimental scheme to implement our proposal. We believe that this
work may deepen our understanding of coherence as a resource and may provide us
with better insights to manifest quantum technologies.

Data Availability Statement Data sharing was not applicable to this article as no datasets were generated
or analyzed during the current study.

Appendix-A

To prove Tr(�2) ≤ ∑4
i=1 t

2
ii + Cl1(�)

In this section, wewill provide the proof of the inequality Tr(ρ2) ≤ ∑4
i=1 t

2
i i+Cl1(ρ).

To achieve our goal, we recall an arbitrary two-qubit quantum state described by the
density operator ρ given in (5).
l1 norm of coherence of ρ is given by

Cl1(ρ) = 2
4∑

i, j=1,i �= j

|ti j | (45)

Tr(ρ2) is given by

Tr(ρ2) =
4∑

i=1

t2i i + 2(|t12|2 + |t13|2 + |t14|2 + |t23|2

+|t24|2 + |t34|2)

≤
4∑

i=1

t2i i + 2(|t12| + |t13| + |t14| + |t23|

+|t24| + |t34|)

=
4∑

i=1

t2i i + Cl1(ρ) (46)

123



173 Page 12 of 13 P. Kairon et al.

Thus, we have

Tr(ρ2) ≤
4∑

i=1

t2i i + Cl1(ρ) (47)
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